Summary
Pod-based electronic (e-) cigarettes more efficiently deliver nicotine using a protonated formulation.
The cardiovascular effects associated with these devices are poorly understood.
We evaluated whether pod-based e-liquids and their individual components impair endothelial
cell function. We isolated endothelial cells from people who are pod users (n = 10),
tobacco never users (n = 7), and combustible cigarette users (n = 6). After a structured use,
pod users had lower acetylcholine-mediated endothelial nitric oxide synthase (eNOS) activation
compared with never users and was similar to levels from combustible cigarette
users (overall P = 0.008, P = 0.01 pod vs never; P = 0.96 pod vs combustible cigarette). The
effects of pod-based e-cigarettes and their constituents on vascular cell function were further
studied in commercially available human aortic endothelial cells (HAECs) incubated
with flavored JUUL e-liquids or propylene glycol (PG):vegetable glycerol (VG) at 30:70 ratio
with or without 60 mg/mL nicotine salt for 90 min. A progressive increase in cell death with
JUUL e-liquid exposure was observed across 0.0001–1% dilutions; PG:VG vehicle with and
without nicotine salt induced cell death. A23187-stimulated nitric oxide production was
decreased with all JUUL e-liquid flavors, PG:VG and nicotine salt exposures. Aerosols generated
by JUUL e-liquid heating similarly decreased stimulated nitric oxide production. Only
mint flavored e-liquids increased inflammation and menthol flavored e-liquids enhanced oxidative
stress in HAECs. In conclusion, pod e-liquids and their individual components appear
to impair endothelial cell function. These findings indicate the potential harm of pod-based
devices on endothelial cell function and thus may be relevant to cardiovascular injury in pod
type e-cigarette users.
Citation
Majid S, Weisbrod RM, Fetterman JL, et al. Pod-based e-liquids impair human vascular endothelial cell function. PloS one. 2023;18(1):1. doi:10.1371/journal.pone.0280674